skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Nowe, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Vorobeychik, Y; Das, S; Nowe, A (Ed.)
    We study the problem of fair allocation of indivisible items when agents have ternary additive valuations --- each agent values each item at some fixed integer values a, b, or c that are common to all agents. The notions of fairness we consider are max Nash welfare (MNW), when a, b, and c are non-negative, and max egalitarian welfare (MEW). We show that for any distinct non-negative a, b, and c, maximizing Nash welfare is APX-hard --- i.e., the problem does not admit a PTAS unless P = NP. We also show that for any distinct a, b, and c, maximizing egalitarian welfare is APX-hard except for a few cases when b = 0 that admit efficient algorithms. These results make significant progress towards completely characterizing the complexity of computing exact MNW allocations and MEW allocations. En route, we resolve open questions left by prior work regarding the complexity of computing MNW allocations under bivalued valuations, and MEW allocations under ternary mixed manna. 
    more » « less
    Free, publicly-accessible full text available June 5, 2026